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Part I: An application of Boundary Crossing in Climatology
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Introduction

• The study of the projected path of the climate system
involves an assessment of the crossing of significant
thresholds referred to as “impact threshold” or “tipping
points”.

• “Impact threshold” refers to “any degree of change that can
link the onset of a given ciritcal biophysical or socio-economeic
impact to a particular climate state(s)” (Pittock & Jones, 2000;
Jones, 2001)
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Classical Approach
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The Mean Path
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Traditional Estimator
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Can we do a better job?
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Consider the mean of the stopping times Ti
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Now we have two estimators: T(CF),T(NF)
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The question that we ask

• In this project, we are concerned with determining the best
estimate of a threshold corssing time from a range of
climate change projections.
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Methodology

• The data used to carry out the demonstration are time
series of two subtropical regions:

(a) the US southwest (125◦W to 95◦E; 25◦N to 40◦N) and
(b) the Mediterranean (10◦W to 50◦E; 30◦N to 45◦N)

calculated from IPCC † Fourth Assessment (AR4) model
simulations of the 20th and the 21st century (Randall et al.
2007; Meehl et al. 2007).

† IPCC here refers to Intergovernmental Panel on Climate Change. It is the leading body for the

assessment of climate change, established by the United Nations Environment Programme (UNEP) and the

World Meteorological Organization (WMO) to provide the world with a clear scientific view on the current

state of climate change.
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Some Technical Details

• Output from 19 models is considered.

• The models are forced in the 20th century with the
observed, time dependent greenhouse gas concentrations,
anthropogenic aerosols, and volcanic areosols.

• In the future simulations, the models are forced with
forcing scenario A1B (see IPCC 2000) - “middle of the
road” estimate.
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Determining the Threshold

• We use a threshold derived from 19 simulated paths to
represent climate states. The models are forced with
forcing scenario A1B (see IPCC 2000) - “middle of the
road” estimate.

• Specifically, we define the threshold as being one standard
deviation below the 21-year averaged rainfall that are
sampled annually between 1950 and 2000.

• Assumptions:

- each of the models provides a/an (exchangeable) realisation
of the process under study and

- the projected paths span the range of the possible future
scenarios.

15 / 31



First-hitting Time

• Define

Tr,i := inf {t ∈ [0, τ] : Xi(t) > r} , i = 1, . . . , n(= 19),

as the first hitting time of the ith simulated path Xi with τ
bounded.

• The true path Tb is defined as

Tb =


T1 with probability (w.p.) 1

n ,
T2 w.p. 1

n ,
...
Tn w.p. 1

n .
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First-hitting Time

• Two forecasts:
1. Mean of the first-hitting time:

T(NF)
r :=

1
16

16∑
i=1

Tr,i

2. First-hitting time of the mean path:

T(CF)
r := inf

{
t ∈ [0, τ] :

1
16

16∑
i=1

Xi(t) > r

}

Remark: Only 16 out of the 19 models crossed the threshold before the end of the 21st century. We here
exclude the three potential outliers.
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Optimality

[Proposition] Our proposed estimator T(NF)
b outperforms

the traditional estimator T(CF)
b in terms of (i) mean-squared

error and (ii) Brier skill score.
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Results

T(NF)
trunc T(NF) T(CF)(K−1)

Mediterranean 2010.21 2010.21 2040
Southwest US 2004.63 ∞ 2018

where T(NF)
trunc = 1∑19

i=1 1{Ti<∞}

∑19
i=1 Ti1{Ti<∞}.
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Remarks

• As the figures demonstrate, there is there is discrepancy
between the threshold of the average path and the average
time of the paths.

• According to current scientific evidence, the transition to a
more arid climate in these two regions is already
underway, supporting our models’ projections.
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Part II: From Boundary Crossing of Non-random Functions to
Boundary crossing of stochastic Processes
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From Boundary Crossing of
Non-random Functions to Boundary

crossing of stochastic Processes
• What if not all the paths cross the boundary before the end

of the experiment?
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Intuition

Figure: Extension to Random Processes.

• Question: How is E[Tr] related to a−1(r)?
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Boundary Crossing: Example

• Let a(n)(t) = E sups6t Xs = n−1∑n
i=1 sups6t Ys,i. Assume an(t) is

increasing (we can also use a generalized inverse) with
a−1
(n)(r) = tr = inf{t > 0 : a(n)(t) = r} −→ a(t), we can obtain bounds,

under certain conditions:

1
2

a−1
(n)(r/2) 6 E[Tr] 6 2a−1

(n)(r),

when E[Tr] <∞.

25 / 31



Results

T(NF)
trunc T(NF) T(CF)(K−1) M̂ a−1

19 (r)
Mediterranean 2010.21 2010.21 2040 2018 2008
Southwest US 2004.63 ∞ 2018 2011 2004

where T(NF)
trunc = 1∑19

i=1 1{Ti<∞}

∑19
i=1 Ti1{Ti<∞}
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The End
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Proof.

Denote F = σ(Xπ(1), Xπ(2), . . . , Xπ(K)), where π is a finite permutation, i.e. F is
the σ-algebra generated by the permutable events of X.

To prove (i) observe that, for any F-measurable random variable C,

E[Tb|F] = T(NF) and

S2
T(NF)

b ,Tb
:= E

[
T(NF)

b − Tb

]2

= E
{

E
[
(T(NF)

b − Tb)
2

∣∣∣∣F]}
= E

{
E
[
(T(NF)

b − C + C − Tb)
2

∣∣∣∣F]}
= E

(
E
[
(T(NF)

b − C)2

∣∣∣∣F])+ 2E
(

E
[
(T(NF)

b − C)(C − Tb)

∣∣∣∣F])
+E
(

E
[
(C − Tb)

2

∣∣∣∣F])
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Proof.

= E
[
T(NF)

b − C
]2

+ 2E{(T(NF)
b − C)(C − E

[
T(NF)

b |F
]
)}

+E
(

E [C − Tb]
2
∣∣∣∣F)

= E
[
T(NF)

b − C
]2

− 2E
[
T(NF)

b − C
]2

+ E [C − Tb]
2

= E [C − Tb]
2
− E

[
T(NF)

b − C
]2

6 E [C − Tb]
2 .

The result follows by picking C = T(CF)
b . �
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Proof.
(ii) follows immediately from (i) by recalling that

B
T(NF)

b ,T(CF)
b ,Tb

= 1 −

S2
T(NF)

b ,Tb

S2
T(CF)

b ,Tb

> B
T(CF)

b ,T(CF)
b ,Tb

= 0.

�

In fact, the above result holds for any other F-measurable random variable in
addition to T(CF)

b .
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Proof.
Denote M̂ the sample median of {Ti}

K
i=1. We are going to prove that M̂

minimises the absolute error with respect to Tb. Suppose Tb, the true stopping
time, equals the stopping time of one of the simulated paths Ti, with equal
probability of K−1, then

E|Tb − M̂| = E{E
[
|Tb − M̂|

∣∣∣∣σ(T1, . . . , TK)

]
}

= K−1
∫ K∑

i=1

|ti − m̂|dF(t)

6 K−1
∫ K∑

i=1

|ti − c(t)|dF(t)

= E|Tb − C|,

for any σ(T1, . . . , TK)-measurable random variable C. The inequality follows
because the sample median m̂ minimises the sum of absolute errors away
from the sample points {t1, . . . , tk}. The proof is completed by picking
C = T(CF)

b . �
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